

Laser Stabilization for Near Zero NO_x Gas Turbine Combustion System

at

Turbine Power Systems Conference and Conditioning Monitoring Workshop
February 25-27, 2002

Contract: DE-FC26-01NT41230

- Program Overview
- Technical Issues
- Plans
- Status

Program Structure

A Caterpillar Company

- 4 Year Duration (10/01 start)
- Solar / CFDRC cost share
- DOE Project Manager: Norm Holcombe

- Demonstrate A Pulsed Laser System For Gas Turbines:
 - Reduce Combustor Oscillations
 - Enhance Lean Stability to Allow Near-Zero NOx Emissions

Develop & Validate LES/CFD Models For Transient
 Combustion

Can or Can-Annular Combustion Systems

Multi-Injector Annular Combustors

Annular Combustors

A Caterpillar Company

Technical Approach

CONTROL STRATEGY

Fuel Injector Cross-Section

Solar Turbines

Test Facilities

A Caterpillar Company

Single Injector Rig

Full Combustor Rig

Engine Ri

Single Injector Atmospheric Rig

Single Injector Rig Tests

Atmospheric Pressure Combustor

- Quartz for better visibility
- Low pressure for ease of access
- Provides an early assessment of concept feasibility

High Pressure Can Combustor

Testing at realistic engine conditions

Laser System

- Power requirements
- Pulse duration
- Pulse frequency
- Multiplexing
 - . Couple multiple lasers to obtain higher frequencies
 - Provide laser pulses to multiple injectors

Active Control System

- Control system hardware and software definition
- Sub-harmonic control of combustion oscillations
- Effective control frequency window
- Amplitude
- Phase

Vector Representation of Control Process

 Laser pulse (magnitude, phase and duration) relative to pressure oscillation determines the amount of control

Implementation on Gas Turbines

- Optical access in commercial turbines
- Durability
- Cost
- Packaged control system

Program Plan

<u>Year</u>	<u>Activities</u>
1	 Single Injector Rig Tests Proof-Of-Concept
	 Parametric Tests CFD Modeling
2	 Laser System Definition High Pressure Rig Tests
	OptimizationCFD Modeling

Program Plan

Year

Activities

3

- Multi-Injector CombustorRig Tests
- CFD Modeling

4

- Engine Demonstration
 - Centaur GT

- Setting up for atmospheric pressure test
 - Baseline data (LBO and oscillations)
 - Impact of laser pulsing

 CFD calculations underway to assess plasma effects on combustion